图片 9

轨道快车卫星,紧跟国际空间技术前沿

图片 1

中国试验“太空加油机” 紧跟国际空间技术前沿

  据央视新闻8月1日报道,8月1日15时03分,天舟一号货运飞船成功在轨释放一颗立方星,随即地面成功捕获立方星。(立方星是国际上广泛用于大学开展航天科学研究与教育的一种小卫星,国际上将重量小于1吨的卫星,称为小卫星。——注)

  • 名称:轨道快车卫星
  • 制造商:波音幻影工厂,巴尔航天公司
  • 发射日期:2007年3月8日(运载火箭),2007年3月8日(航天器)
  • 发射地点:佛罗里达州,卡纳维拉尔角
  • 轨道:490公里×498公里
  • 运载火箭:大力神(阿特拉斯V 401)

从6月25日开始,澎湃防务陆续对长征七号火箭的技术创新及其携带的多类载荷进行了专题报道,在对绿色火箭、上面级、缩比返回舱和遨龙一号飞行器进行专业分析后,今日的关注焦点转移到在轨加注实验装置上,这也是长征七号专题针对有效载荷的最后一篇专业分析。

  报道称,本次试验是我国首次通过飞船系统采用在轨储存方式释放立方星,完成了非火工品装置的分离解锁技术、部署发射器与立方星间接口匹配技术以及部署发射器制造的材料和工艺保证技术验证,为后续我国空间站开展微纳卫星部署发射及在轨服务奠定了技术基础。

有效载荷

  • 自主对接和捕获探测器;捕获子系统;机械手系统,被动俘获机械系统;传感器系统目标;交联通信装置;流体转移子系统。

图片 2

图片 3

结构尺寸

  • 1.8米×1.8米(ASTRO运载火箭),1米×1米(NextSat航天器)

轨道快车卫星美国图片 4

  轨道快车(ASTRO运载火箭和NextSat航天器)卫星。“轨道快车”计划由美国国防高级研究计划局组织,为在轨卫星远程控制能力的充分显示提供服务。由于使用了NASA马歇尔太空飞行中心研制的自主软件,“轨道快车”计划能够充分验证在轨自主卫星服务的能力。

长征7号运载火箭发射。 澎湃新闻记者 赵昀 图

  2017年4月20日19时41分,海南文昌,我国自主研制的首艘货运飞船天舟一号发射升空。图片来源视觉中国

结构特点使用情况

在轨加注技术通俗地讲就是“太空加油”,但是受空间条件所限,在轨加注存在特有的技术风险与成本制约。此次在轨加注实验装置的发射表明,中国正在紧跟在轨服务这一前沿的空间技术,以提高空间在轨服务能力。

  本次在轨释放的立方星为标准3U结构,安装在立方星在轨部署发射器内,于今年4月20日随天舟一号货运飞船发射升空,已在轨储存104天,该星的主要任务是开展相关航天新技术试验验证。(内容来源/航天技术试验项目办公室)

结构特点

“轨道快车”包括两部分,即“太空自动化运输机器人”(ASTRO运载器)和未来新一代服务卫星“未来星(NextSat)”。它们都是由美国的“大力神5号”运载火箭携带发射升空的。

卫星为何需要“太空加油”?

  [阅读延伸]

使用情况

到2007年7月21日,“未来星”的太阳能电池阵列方向转离太阳,卫星停止运转。不久ASTRO运载器也排放出剩余燃料而退役了。ASTRO运载器能够从“未来星”的位置移到6公里(3.7英里)远的地方,应用红外照相机和3公里(1.9英里)的激光测距仪进行搜索重建。开始于2007年7月16日的最后一项演示,是两星分离以使得ASTRO运载器与未来星系统失去联系。通过地面太空监视网络输入指令情报,ASTRO运载器能够再次捕捉“未来星”,转换至它的星载探测器以完成交会对接。

卫星的服役寿命取决于多种因素,但往往主要取决于动力因素。卫星的动力主要来源于两个方面,一是自身从地球携带的燃料,二是太阳能电池板。虽然航天器一般都安装着太阳能帆板电池,但由于要长期在轨运行,卫星还是需要消耗燃料来进行轨道维持、误差修正、调整姿态以及应急变轨等“动作”。

  “天舟一号”发射:解决了一个世界难题

当前,随着技术的不断成熟,卫星自身元器件的可靠性等综合性能已经达到一个相当的高度,燃料就成为影响卫星服役寿命的重要瓶颈。一般情况下,卫星、空间站等航天器被发射到轨道上,燃料耗尽或发生故障后就会被弃用。许多被弃用的卫星本身其实功能完好,但它们的命运已经注定,只能一圈圈地在轨道上运行,直到脱离轨道坠入大气层,或者与其他航天器相撞成为太空垃圾,最终“
油尽灯枯”。因此,科研人员试图通过研发轨道燃料加注的相关技术,以在未来对燃料耗尽的卫星进行补给,延长大量高价值的卫星、空间站等航天器的飞行寿命,提高效费比。

  据《环球科学》4月21日报道,“天舟一号”不仅要为空间站运送物资,还承担了一些重要的科学实验任务。

此外,在轨加注服务还能够显著提升空间探测能力,减少运载器规模,降低任务成本,从而推动人类实现载人探火星、载人探小行星等载人深空探测梦想。

  如果说中国航天人的征途是“星辰大海”,那么“天舟一号”就是“星辰大海”中的生命之舟。天舟一号货运飞船,由中国空间技术研究院(中国航天科技集团五院)研制的一款货运飞船,也是中国首个货运飞船。在1992我国确定的载人航天“三步走”的发展战略中,发射载人飞船为第一步,突破航天员出舱活动技术、空间飞行器的交会对接技术,发射空间实验室为第二步,在第二步中同时要解决有一定规模的、短期有人照料的空间应用问题,为第三步建造空间站做准备。天舟一号的成功发射,将是我国载人航天工程“三步走”战略计划“第二步”的收官之作。

最早应用在轨加注技术的国家是苏联和美国。1978年,苏联“礼炮六号”空间站首次实现了在轨加注,目前,国际空间站已经成功进行多次在轨加注工作。以往,在轨加注技术的主要对象是空间站等大型航天器,近年来,针对尺寸相对较小的航天器——卫星进行的在轨加注开始成为各国研究的热点。目前,美国通过“轨道快车”等计划进行了不少在轨加注实验,其在轨加注技术走在世界先进前列。

图片 5

中国对在轨加注也具有迫切需求,无论是未来空间站建设,还是卫星延寿,都需要在轨加注技术的支撑。

  中国载人航天工程“三步走”战略计划(图片来源于新华社)

按计划,从2018年起,中国将陆续发射空间站的核心舱和实验舱,2020年左右建成空间站,而空间站正常运行的条件之一就是掌握在轨加注技术。不止如此,到2020年左右,中国在轨卫星数量将达到200颗左右,提升这些卫星的效益也需要掌握在轨加注技术。然后在此基础上,中国还可以适时研究在轨加注站技术,推动中国载人深空探测计划的实施。

  作为货运飞船,天舟一号的首要任务就是运输航天员所需的生活工作必需品,以及空间站所需的推进剂等。它庞大的身躯(长10.6m,宽3.35m)以及两舱结构设计(货物仓和推进舱)最大限度地满足了货物装载、提供能源、控制动力等需求。天舟一号在近地轨道上的运载能力为6.5吨左右,高于俄罗斯联邦航天局研制的进步号M型(2.5吨)以及日本宇宙航空研究开发机构的H-II运载飞船(6.0吨)。但是,如果你认为天舟一号仅仅是“太空货物的搬运工”那就大错特错了,天舟一号还有以下几个非常重要的任务。

此次发射在轨加注实验装置是中国首次空间在轨加注试验,相较于以往相关单位开展的关于在轨加注的理论研究、仿真分析和试验研究,可以说这次试验向实际应用前进了一大步。通过此次在轨加注试验,可以对空间推进剂流量及质量测量、加注对接接口、流体传输、推进剂管理、空间精细化自主操作等方面开展试验研究,探索和积累相关技术。

图片 6

在轨加注技术具有广泛应用前景,对于人类大规模、常态化的空间探索活动具有深远影响,能够为空间探索模式提供更多的选择,对于降低航天运输成本和任务风险、增强空间飞行器的任务适应性、延长空间飞行器的寿命都具有重要的作用。目前,美国在该领域相对领先,中国应加大研究投入,尽早掌握在轨加注技术。

  长征七号遥二运载火箭与天舟一号货运飞船组合体垂直转运完毕(图片来源于中新网)

一颗卫星的造价动辄数亿美元,有的甚至更高,如果能够在太空为其补加燃料,延长寿命,带来的经济效益将十分可观。但问题是,以人类现在的技术条件和成本控制,给在轨运行的卫星补加燃料的成本,不见得比重新发射一颗卫星低多少。

  开展空间科学实验

此外,现在的卫星设计多以一次性使用为前提,实施补加燃料的可行性不大。今后发射的卫星如果需要进行在轨补加燃料,在设计之初就需要安装一套较为复杂的加注系统,但这又会占用一定的卫星有效载荷。

  天舟一号上总共搭载了40台设备,在独自飞行的三个月内,要进行13项太空试验。空间应用系统将在天舟一号上开展多项科学实验研究及技术验证试验,其中的“非牛顿引力实验检验的关键技术验证”获得的试验结果将为我国“卫星重力测量”、“空间引力波探测”等空间计划提供重要支撑;“主动隔振关键技术验证”将为空间站高微重力实验平台研制奠定技术基础;“两相系统实验平台关键技术研究”将在欧空局相关项目之前实施,有望使我国在此领域率先获得科学成果和实验技术的突破;“微重力对细胞增殖和分化影响研究”项目研究微重力等环境对干细胞增殖分化、生殖细胞分化及骨组织细胞结构功能的影响,成果有望应用于心脏、肝脏疾病的治疗、器官移植、生殖健康,以及预防和治疗骨质变化疾病等方面。

而且,在轨补加燃料还要面临交会对接以及加注过程中存在的风险,一旦发生意外,损失也将是不可估量的。尽管从技术层面上说,人类目前已经掌握的交会对接、空间机械臂等技术,能够支持我们完成太空加油的任务。但是,航天活动一直是一项高风险活动,其风险控制方面还有待加强,尤其是加注过程中容易发生的燃料泄漏等危险,不仅会导致加注失败,甚至还会导致卫星失效。

  实现太空“加油”

不过,虽然在轨加注目前看上去存在一些困难,但其未来多方面的应用价值是可以预见的。除了给卫星延寿外,卫星在轨燃料加注技术还将推动先进的自动交会对接系统、机械臂等捕获装置的研发,而后者在未来可以为行星防御、大型轨道结构的安装等进行服务。此外,在轨燃料加注技术一旦被广泛采用,将会对后续卫星、飞船等航天器的设计理念有所突破,太空开发的成本也将有效降低,同时还能有效减少太空垃圾的数量。(原标题:技术派|中国试验“太空加油机”,紧跟国际空间技术前沿)

  天舟一号将与天宫二号将首次实施推进剂在轨补加。为什么天宫一号不需要“太空加油”,天宫二号需要“加油”呢?相比于天宫一号而言,天宫二号进行了大批量的空间应用试验,航天员在轨的时间也长了一倍,但天宫二号的重量却和天宫一号相同,因此就需要给力的天舟一号货运飞船为天宫二号实施“太空加油”。

特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。

  “太空加油”看似简单,却是公认的世界性难题,目前掌握了在轨推进剂补加技术的国家仅有俄罗斯和美国,其中真正应用在轨加注的国家只有俄罗斯。另外欧空局、日本等国家也在这个领域进行着积极的探索,国际竞争非常激烈。因为太空航天器在轨运行期间,需要消耗推进剂来维持轨道和姿态,但航天器发射时所携带的推进剂的量是一定的,推进剂消耗完毕,就意味着航天器寿命的终结,必须通过不断给空间站提供推进剂,维持空间站长期运行。

  因此中国要建造空间站,必须要掌握这项关键技术。天舟一号作为我国全新设计的货运飞船,拥有两个独立设计的推进剂储箱,不仅为天宫二号携带一箱推进剂,用于自身控制的推进剂也可以进行“转让”,推进剂补加能力约为2吨。在飞行中将多次开展补加推进剂试验,熟练掌握和控制该项技术,为我国空间站的建立提供能源支持。

图片 7

  天舟一号与天宫二号实施推进剂在轨补加示意图(图片来源于搜狐网)

  实现全自主超快速交会对接

  交会对接试验相信大家都已不再陌生,早在2011年11月3日凌晨1时35分,天宫一号目标飞行器就已与神舟八号飞船顺利完成我国的首次交会对接。但是,在天舟一号上天前,我国掌握的交会对接技术需要耗时长达两天时间,天舟一号将首次使用自主交会对接技术,可以将以前的两天时间缩短为6个小时,大大减少了过程中的资源消耗,比如轨道资源等。也会进一步提高飞行器在轨飞行的可靠性以及航天员的舒适度,更大程度地保障未来空间站的安全。值得一提的是,自主快速交会对接,需要超远程精确控制能力,可以说,快速交会对接的实现,比针尖对麦芒都更加困难。

图片 8

  天舟一号与天宫二号进行三次对接

  实现主动离轨受控陨落

  在天舟一号圆满完成自己的各项任务后,它在回来的路上还肩负着最后一项神秘使命。我们知道,一般卫星完成使命后,随着推进剂消耗殆尽,卫星失去动力,运行轨道将会慢慢降低,直到落入大气层被烧毁,在这个过程中,会产生一部分轨道碎片(太空垃圾),包括航天器表面脱落的材料,遗漏出来的液体固体等。这些太空垃圾有可能成为未来航天器的杀手,据统计,与大于10厘米的太空垃圾碰撞或可“杀死”航天器。天舟一号在降落的过程中,将全程经由地面飞行控制人员控制,主动离开既定轨道,坠落在预定的安全海域。天舟一号的受控降落,不仅减少了离轨过程中的不确定因素,而且还避免自身成为太空垃圾,可以为打造洁净安全的太空环境尽了自己最后的一份力。

  中国航天事业自1956年创建以来,从无到有,从小到大,从弱到强,经过几代航天人艰苦卓绝的奋斗,我国走出了一条自力更生、自主创新的发展道路。今年的4月24日,中国航天事业发展将迎来61周年的纪念日,同时这也是第二个“中国航天日”。即将出征的“天舟一号”货运飞船是给第二个“中国航天日”最好的献礼。

图片 9